
Malaysian Journal of Mathematical Sciences 13(S) December: 97–111 (2019)
Special Issue: Conference on Mathematics, Informatics and Statistics (CMIS2018)

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Journal homepage: http://einspem.upm.edu.my/journal

Approximation of Intuitionistic Fuzzy Bézier
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ABSTRACT

In this paper, approximation of Bézier curve by using intuitionistic fuzzy
approach is introduced. Firstly, intuitionistic fuzzy point relation is de-
fined based on intuitionistic fuzzy concept to yield intuitionistic fuzzy
control point. Some theorems of intuitionistic fuzzy point relation are
also introduced. Later, the intuitionistic fuzzy control point is blended
with Bernstein blending function and intuitionistic fuzzy Bézier curve
model is produced. Next, the approximation curves consists of member-
ship, non-membership and uncertainty curves is visualized. A numerical
example is shown and the introduced Bézier curve properties are also dis-
cussed. Finally, an algorithm to obtain intuitionistic fuzzy Bézier curve
is presented at the end of this paper.

Keywords: Approximation; Bézier curve; intuitionistic fuzzy Bézier
curve; intuitionistic fuzzy control point.



Zulkifly, M. I. E. and Wahab, A. F.

1. Introduction

Curve and its properties play a major role in visualizations of data such as
from medical, marines, geological, design, manufacturing, physical and other
natural behavior or phenomenon. Approximation is an important term used in
definition of curves. A curve is compute by using points where minimum points
required is n = 3. The points used are also called control points and the curve
generated passes approximate to the points and not through them (Salomon
(2006)). The curve defined by the control point later is called approximating
curve. One of the most reliable curve modeling techniques that often used is
Bézier curve.

The geometric properties of Bézier were developed by Casteljau (1959)
and Casteljau (1963), and later by Pierre Bézier starting in 1962 as stated
in Hoschek and Lasser (1993). Casteljau developed a system mainly aim in the
design of curves and surfaces. He also used Bernstein polynomials in order to
define curve and surface and introduced de Casteljau algorithm. The Bézier
method use control polygons where the control polygon utilizes points near it
rather than defining a curve through points on it (Farin (2002)). By using
control polygon in Bézier method, the curve shape can be changed by changing
the control polygon. This property have made the Bézier model very useful in
real application.

Pierre Bézier has derived the mathematical basis of curves and surfaces
techniques from geometrical considerations as in Bezier (1968), Bezier (1970)
and Bezier (1971). Later, around 1970s, Forrest (1972) and Gordon and Reisen-
feld (1974) found the connection between the work of Bézier and the classical
Bernstein polynomials. They discovered that the Bernstein polynomials are
in fact the basis functions used for Bézier curves and surfaces. Curve is a
necessary and inevitable in order to represent data point (Hoschek and Lasser
(1993)). However, the nature of data point obtained is difficult to understand,
process and represent as it is affected by noise and uncertainty. Normally, data
with uncertainty characteristic will be ignored or removed from a set of data
disregarding its effect on the resulting curve and surface. Hence, the evaluation
and analyzing process will be incomplete. If there exist an element of uncer-
tainty, the data set should be filtered so that it can be used to generate curve
of a model that want to be investigated. Therefore an appropriate approach is
needed to visualize and overcome this problem.

Intuitionistic fuzzy set (IFS) is a generalization of fuzzy set theory from
Zadeh (1965) and was introduced by Atanassov (1983). IFS considers mem-
bership function, non-membership and non-determinacy function in analyzing
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information while fuzzy set theory only considers the membership function
(Atanassov (1986), Atanassov (1999), Atanassov (2012)). Many research and
work related to IFSs have been carried out such as from Atanassov and Gargov
(1989), Szmidt and Kacrzyk (2000), Atanassov (2000), Cornelis et al. (2004),
Yuan et al. (2014), Bashir et al. (2015), Diaz et al. (2015), Rahman (2016),
Ngan (2016), Wang and Chen (2017) and Hassaballah and Ghareeb (2017).
IFS is defined by membership function, non-membership function and uncer-
tainty function with the constraint that summation of these three functions
must equal to one (Ciftcibasi and Altunay (1998)).

Research of IFS with geometric modeling have been done by Zulkifly and
Wahab. Zulkifly and Wahab (2015) introduced an idea of IFS in spline curve
and surface which focus on Bézier spline where the curve and surface are
blended with intuitionistic fuzzy control point (IFCP). Wahab et al. (2016)
discussed intuitionistic fuzzy Bézier model and generated intuitionistic fuzzy
Bézier curve (IFBC) using interpolation method. They visualized IFBC by
blending the Bernstein polynomial IFCP that have been defined. Later, Zulk-
ifly and Wahab (2018) defined IFCP through intuitionistic fuzzy concept with
some properties and illustrated intuitionistic fuzzy bicubic Bézier surface by
using approximation method. Using IFCP, Wahab and Zulkifly (2018a) and
Wahab and Zulkifly (2018b) also generated cubic Bézier curve through inter-
polation method and intuitionistic fuzzy B-spline curve using approximation
method.

Curve modeling is a method of mathematical representations construction
in the form of geometry while IFS theory is a mathematical representation
that aimed at concepts and techniques to tackles uncertain problems. The
aim of this paper is to generate and illustrate IFBC through approximation
method by using IFCP. This paper is organized as follows. Section 1 discussed
some introduction and previous works related to this research. In section 2,
intuitionistic fuzzy point relation (IFPR), its properties and IFCP is shown.
Section 3 introduces approximation of IFBC by using IFCP. Section 4 shows
a numerical example and visualization of IFBC. The properties of the curve
and the algorithm to obtain the curve are also shown. Finally, section 5 will
conclude this research.

2. Intuitionistic Fuzzy Point Relation

IFPR is developed based on the concept of IFS and defined as follows:

Definition 2.1. Let V,W be a collection of points with non-empty set and
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V,W, I ⊆ R3, then IFPR is defined as

T ∗ =
{〈

(vi, wj), µT (vi, wj), πT (vi, wj)
〉
|(

(µT (vi, wj), νT (vi, wj), πT (vi, wj)
)
∈ I
} (1)

where (vi, wj) are points in ordered pair and (vi, wj) ∈ V×W . µT (vi, wj), νT (vi,
wj) and πT (vi, wj) are the grades of membership, non-membership and uncer-
tainty of the ordered pair of points respectively in [0, 1] ∈ I. The condition
0 ≤ πT + νT (vi, wj) ≤ 1 is follow and the degree of uncertainty is denoted by

πT (vi, wj) = 1−
(
µT (vi, wj) + νT (vi, wj)

)
(2)

IFPR is based on fuzzy point in the Euclidean space and intuitionistic fuzzy
point (IFP) is in IFS. Hence, IFPR is in intuitionistic fuzzy relation (IFR)
and represented by T ∗ ∈ R∗ and P ∗ ×Q∗ ∈ A∗ ×B∗.

Definition 2.2. Let P ∗ be an IFP and A∗ is intuitionistic fuzzy number (IFN)
in V . P ∗ is said to be in A∗ and denoted by P ∗ ∈ A∗ if and only if µP (vi) ≤
µA(vi) and νP (vi) ≥ νA(vi) for all vi ∈ V . Every A∗ can be expressed as
the union of all IFP that belong to A∗ which if µA(vi) and νA(vi) is non-
zero for vi ∈ V , then µA(vi) = sup{y : µP (vi) is IFP (membership) and
0 < y ≤ µA(vi)} and νA(vi) = inf{y : νP (vi) is IFP (non-membership) and
0 < µA(vi) ≤ y} respectively. Therefore, each and every IFP P ∗ in A∗ can be
written as P ∗ = {P ∗i |i = 1, 2, ..., n, i ∈ N} and A∗ = P ∗1 ∪ P ∗2 ∪ ... ∪ P ∗n .

Theorem 2.1. If A∗ =
⋃
i∈I
A∗i where I = {1, 2, ..., n} and I is any index, then

P ∗ ∈ A∗ if and only if P ∗ ∈ A∗i for some i ∈ I.
Proof: Let the support for P ∗ denoted by v0, then

µA(v0) = sup
i∈I

(µAi
(v0)),

νA(v0) = inf
i∈I

(νAi
(v0))

(3)

(i) There exists some i0 ∈ I such as µAi0
(v0) = µA(v0) and νAi0

(v0) = νA(v0).
(ii) µAi

(v0) ≤ µAi
(v0) and νAi

(v0) ≥ νAi
(v0) for all i ∈ I. For (i). P ∗ ∈

A∗i0 . For (ii), P ∗ ∈ A∗ implies that µP (v0) ≤ µA(v0), νP (v0) ≥ νA(v0) and
considering that µA(v0) = sup

i∈I
µAi(v0), νA(v0) = inf

i∈I
νAi(v0), it follows that

µP (v0) ≤ µAi0
(v0), νP (v0) ≥ νAi0

(v0) for some i0. Thus, P ∗ ∈ A∗i0
Definition 2.3. Let P ∗ and Q∗ be an IFP and A∗ and B∗ is IFN in V
and W respectively. Hence, IFPR T ∗ on P ∗ and Q∗, P ∗ × Q∗ is said to
be in R∗, and denoted by P ∗ × Q∗ ∈ A∗ × B∗ if and only if µT (vi, wj) ≤
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µR(vi, wj) and νT (vi, wj) ≥ νR(vi, wj) for all (vi, wj) ∈ V ×W . Obviously,
every R∗ can be expressed as the union of all IFPR that belong to R∗ which if
µT (vi, wj) and νT (vi, wj) is non-zero for (vi, wj) ∈ V ×W , then µR(vi, wj) =
sup{µP×Q(vi, wj) : µP×Q(vi, wj) is IFPR (membership) and 0 < µP×Q(vi, wj)
≤ µR(vi, wj) and νR(vi, wj) = inf{νP×Q(vi, wj) : νP×Q(vi, wj) is IFPR (non-
membership) and 0 < µR(vi, wj) ≥ νP×Q(vi, wj) respectively. Therefore, each
and every T ∗ in R∗ can be written as T ∗ = {T ∗i |i = 1, 2, ..., n, i ∈ N} and
R∗ = T ∗1 ∪ T ∗2 ∪ ... ∪ T ∗n .

Theorem 2.2. If R∗ =
⋃
i∈I
A∗i where I = {1, 2, ..., n} and I is any index, then

T ∗ ∈ R∗ if and only if T ∗ ∈ R∗i for some i ∈ I
Proof: Let the support for T ∗ denoted by (v0, w0), then

µR(v0, w0) = sup
i∈I

(µRi
(v0, w0)),

νR(v0, w0) = inf
i∈I

(νRi(v0, w0))
(4)

(i) There exists some i0 ∈ I such as µRi0
(v0, w0) = µR(v0, w0) and νRi0

(v0, w0)
= νR(v0, w0). (ii) µRi

(v0, w0) ≤ µRi
(v0, w0) and νRi

(v0, w0) ≥ νRi
(v0, w0) for

all i ∈ I. For (i). T ∗ ∈ R∗i0 . For (ii), T ∗ ∈ R∗ implies that µT (v0, w0) ≤
µR(v0, w0), νT (v0, w0) ≥ νR(v0, w0) and considering that µR(v0, w0) = sup

i∈I
µRi(v0, w0), νR(v0, w0) = inf

i∈I
νRi(v0, w0), it follows that µT (v0, w0) ≤ µRi0

(v0,

w0), νT (v0, w0) ≥ νRi0
(v0) for some i0. Thus, T ∗ ∈ R∗i0 .

The collection of all point or set of points that are used to determine the
shape of a curve is called control point. The control point plays an important
role in the process of generating, controlling and producing smooth curve. IFCP
is defined as follows:

Definition 2.4. Let T ∗ be an IFPR, then IFCP is defined as set of points n+1
that indicates the positions and coordinates of a location and is used to describe
the curve and is denoted by

C∗i = {C∗0 , C∗1 , ..., C∗n} (5)

where the control polygon vertices or the control point is numbered from 0 to n.

3. Intuitionistic Fuzzy Bézier Curve Model

A Bézier curve is a parametric curve with polynomial function of parameter
t that was used in geometric modelling and is determined by its control polygon
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(Yamaguchi (1998),Rogers (2001)). The degree of the polynomial depends
on the number of points to define the curve. IFBC is obtained by blending
IFCP with the Bernstein polynomial or basis function and shown in the next
definition.

Definition 3.1. Let C∗ =
{
C∗i
}∗
i
where i = 0, 1, ..., n be the IFCP, and IFBC

denoted by B∗(t) with the position vector along the curve as a function of the
parameter t, hence by blended C∗ with the blending function, IFBC is written
as

B∗(t) =
n∑
i=0

C∗i B
n
i (t), 0 ≤ t ≤ 1 (6)

where
i) Bni =

(
n
i

)
ti(1 − t)n−i ≡ 1 is the blending function with

(
n
i

)
=

n!
i!(n−i)! , 0 ≡ 1 is the binomial coefficient.
ii) C∗ is ith IFCP called geometric coefficient that forms control polygon for
IFBC degree n.
iii) IFBC with nth degree is written as B∗(t) = T ∗0B

n
0 + T ∗1B

n
1 + ...+ T ∗nB

n
i .

The IFBC in (6) consists of membership, non-membership and uncertainty
surface and denoted as follows:

Bµ(t) =

n∑
i=0

C∗i B
n
i (t) (7)

Bν(t) =

n∑
i=0

C∗i B
n
i (t) (8)

Bπ(t) =

n∑
i=0

C∗i B
n
i (t) (9)

Theorem 3.1. For each Bernstein basis function IFBC, Bni > 0 for t ∈ (0, 1)
for all n ≤ 0 and i = 0, 1, ..., n.
Proof: For t ∈ (0, 1),t > 0 and (1 − t) > 0. Therefore Bni is results of n
positive factor product and it is positive.

Theorem 3.2.
∑n
i=0B

n
i (t) for t ∈ (0, 1).

Proof: The proof is follows from binomial teorem where (r + s)n =
∑n
i=0(

n
i

)
rn−1si. Let r = (1− t) and s = t, therefore, ((i− t) + t)n = 1n = 1 =

(r + s)n =
∑n
i=0

(
n
i

)
(1− t)n−iti =

∑n
i=0B

n
i (t).
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Intuitionistic fuzzy control polygon for IFBC is a polygon that is obtained
by connecting the IFCP in order. The degree of the polynomial defining IFBC
segment is one less than the number of intuitionistic fuzzy control polygon
points. It can be said that IFBC generally follows the shape of intuitionistic
fuzzy control polygon. The first and the last IFCP are coincident with the first
and last points of intuitionistic fuzzy control polygon. Moreover, the IFBC is
contained within the convex hull of the intuitionistic fuzzy control polygon.

Definition 3.2. Let C∗ be an IFCP, hence the piecewise curve that is shaped by
line segments through C∗i and C∗i+1 for i = 0, 1, ..., n− 1 is called intuitionistic
fuzzy control polygon.

Theorem 3.3. All planar of IFBC lies in convex hull of IFCP
{
C∗i
}∗
i
associ-

ated with intuitionistic fuzzy control polygon.
Proof: Each and every point that lies on IFBC is computed by using de Castel-
jau algorithm. de Casteljau algorithm that is based on line construction con-
necting points at the intuitionistic fuzzy control polygon vertices. Obviously, at
every step computed, these lines must lies in the convex hull of IFCP. Therefore
Theorem 3.3 is proven.

Fig. 1 visualize an example of intuitionistic fuzzy control polygon consists
of membership, non-membership and uncertainty control polygon denoted by
blue, green and red dots respectively. These control polygon will control the
generated IFBC.

Figure 1: Intuitionistic fuzzy control polygons

Theorem 3.3 is visualized in Fig. 2 until Fig. 5 for t = 0.3, t = 0.5, t = 0.7
and t = [0, 1] for intuitionistic fuzzy Bézier polygon to generate membership
curve. Specifically, this method use linear interpolation. de Casteljau algo-
rithm is a dynamical operation to calculate point on the IFBC and recursive
algorithms to construct point on IFBC.
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Figure 2: de Casteljau algoritm to generate membership Bézier curve for t = 0.3
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Figure 3: de Casteljau algoritm to generate membership Bézier curve for t = 0.5
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Figure 4: de Casteljau algoritm to generate membership Bézier curve for t = 0.7
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Figure 5: de Casteljau algoritm to generate membership Bézier curve for t = [0, 1]

4. Numerical Example, Properties and
Algorithm of Intuitionistic Fuzzy Bézier Model

In order to illustrate IFBC approximation, let’s consider IFBC with five
IFCP and degree four (n = 4) as in Table I.

Table 1: Intuitionistic Fuzzy Control Point with its Respective Degrees

IFCP Membership Non-Membership Uncertainty
C∗0 = (2, 2) (0.6) (0.3) (0.1)
C∗0 = (7, 8) (0.4) (0.4) (0.2)

C∗0 = (11, 13) (0.7) (0.2) (0.1))
C∗0 = (17, 18) (0.5) (0.1) (0.4)
C∗0 = (25, 23) (0.2) (0.3) (0.5)

From Table 1 and through (6), the desired IFBC’s approximation curve
is visualized separately from Fig. 6 until Fig. 8 with their respective con-
trol points and intuitionistic control polygon by blending the IFCP with the
Bernstein blending function. Fig. 6 until Fig. 8 represent the membership,
non-membership and uncertainty Bézier curve. From those figures, the shape
of the curve generated by the intuitionistic fuzzy control polygon can be predict
easily.

Next, the IFBC is visualized as in Fig. 9. Fig 9. shows IFBC with its
respective IFCP and intuitionistic fuzzy control polygon.
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Figure 6: Membership Bézier curve with its respective control points and control polygon

Figure 7: Non-membership Bézier curve with its respective control points and control polygon

IFBC is determined by its intuitionistic fuzzy control polygon. The prop-
erties of IFBC’s consists of three curve (membership, non-membership and
uncertainty) while the Bézier curve is only for the crisp curve. Because the
Bézier basis is also the Bernstein basis, some of the IFBC are known and sum-
marized as follows:
i) The first and the last points on IFBC are coincident with the first and last
point of the intuitionistic fuzzy control polygon.
ii) The IFBC generally follows the shape of the intuitionistic fuzzy control poly-
gon.
iii) IFBC lies in the convex hull for all parametric value .
iv) The degree of the polynomial defining the curve segment is one less than
the number of intuitionistic fuzzy control polygon points.
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Figure 8: Uncertainty Bézier curve with its respective control points and control polygon.

Figure 9: Intuitionistic fuzzy Bézier curve with its respective intuitionistic fuzzy control points
and intuitionistic fuzzy control polygon

v) The IFBC is invariant under an affine transformation.
vi) The Bernstein basis function in non-negative and its sum is equal to one.
vii) The generated IFBC exhibits the variation-diminishing property.
viii) The tangent vector at the ends of IFBC have the same direction as the
first and the last intuitionistic fuzzy control polygon spans respectively.

An algorithm to obtain IFBC is simplified in matrix form as below:

1. IFCP or the vertices of intuitionistic fuzzy control polygon is determined
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with
C∗ =

{
C∗i
}∗
i

2. Step 2. The equation of IFCP is expressed in matrix forms as

B∗(t) = [K][L][C∗] = [M ][C∗]

where C∗ is IFCP and M is the Bernstein basis function Bni (t).

3. Step 3. Later, the coefficient of the parameter terms are collected and
rewrite as

B∗(t) = [K][L][C∗]

where K is the parameter and L is the coefficient.

4. Step 4. Step 1 until Step 3 is repeated for membership, non-membership
and uncertainty curve.

5. Conclusion

This paper has introduced approximation of IFBC model by defining IFCP.
Approximation of IFBC model is an ideal approach in modeling data involv-
ing intuitionistic features because it is characterized by membership function,
non-membership function and uncertainty function. Through these functions,
all data information provided will be processed and analyzed compared to
crisp Bézier curve. Approximation of IFBC model can be applied in stochas-
tic processes, real time tracking, stock market, remote sensing, data mining,
databases, management decision-making field, economy, routing and wireless
sensor networks. The intuitionistic fuzzy data combine with visualization using
Bézier can gives complete information in analyzing and describing the nature
of problems studied with its reasoning.
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polynomials. The Computer Journal, 15(1):71–79.

Gordon, W. J. and Reisenfeld, R. F. (1974). Bernstein-bézier methods for the
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